127 research outputs found

    Toll-like 4 and protease-activated receptor 2 in physiology and pathophysiology of the nervous system: more than just receptor cooperation?

    Get PDF
    Toll-like receptor 4 (TLR4) and protease-activated receptor 2 (PAR2) play pivotal roles in the mammalian innate immune response. Notably, in addition to their involvement in detection of invading pathogens, PAR2 and TLR4 modulate the levels of cell death-induced sterile inflammation by activating pro- or anti-inflammatory downstream signalling cascades. Within the central nervous system, there is emerging evidence that both receptors are involved in synaptic transmission and brain plasticity. Furthermore, due to their prominent role in mediating neuroinflammation, PAR2 and TLR4 are associated with development and progression of neurodegenerative disorders including but not limited to Alzheimer`s disease (AD), Parkinson`s disease (PD) and Multiple Sclerosis. In this article, we summarise the current knowledge on the cooperation between PAR2 and TLR4, discuss the potential cross-talk levels and highlight the impact of the cross-coupling on neuroinflammation

    Toll-like 4 and protease-activated receptor 2 in physiology and pathophysiology of the nervous system: more than just receptor cooperation?

    Get PDF
    Toll-like receptor 4 (TLR4) and protease-activated receptor 2 (PAR2) play pivotal roles in the mammalian innate immune response. Notably, in addition to their involvement in detection of invading pathogens, PAR2 and TLR4 modulate the levels of cell death-induced sterile inflammation by activating pro- or anti-inflammatory downstream signalling cascades. Within the central nervous system, there is emerging evidence that both receptors are involved in synaptic transmission and brain plasticity. Furthermore, due to their prominent role in mediating neuroinflammation, PAR2 and TLR4 are associated with development and progression of neurodegenerative disorders including but not limited to Alzheimer`s disease (AD), Parkinson`s disease (PD) and Multiple Sclerosis. In this article, we summarise the current knowledge on the cooperation between PAR2 and TLR4, discuss the potential cross-talk levels and highlight the impact of the cross-coupling on neuroinflammation

    TLR2 and TLR4-mediated inflammation in Alzheimer`s disease: self-defense or sabotage?

    Get PDF
    In summary, the research field of inflammation is rapidly expanding in the milieu of neurodegenerative diseases. The current evidence presents snapshots in time of the cellular players and their production of inflammatory biomarkers. This is an underestimation of the complexities of inflammatory processes within the brain involved in development and progression of neurodegenerative disorders that might have resulted in the failure of NSAID based prevention and treatment strategies in AD. We postulate that inflammation has an intrinsically dual role in AD. In the acute phase, TLR2 and TLR4-mediated inflammation in the brain represents a self-defence mechanism which affords protection. Therefore, a global inhibition of inflammatory signalling as a preventive measure during the acute phase might not be only ineffective but could even counteract regenerative processes. In contrast, uncontrolled and continuous high levels of inflammation resulting from the feed-forward inflammatory loop mediated by TLR2 and TLR4 are neurodegenerative and causative in the disease progression. Together this creates a therapeutic window aiming to prevent the switch from the acute to the chronic phase before AD clinical presentation to slow down disease progression. The challenge for the Alzheimer’s research community now will be to accurately identify this window in a clinically relevant patient population

    Tumor necrosis factor α triggers proliferation of adult neural stem cells via IKK/NF-κB signaling

    Get PDF
    BACKGROUND: Brain inflammation has been recognized as a complex phenomenon with numerous related aspects. In addition to the very well-described neurodegenerative effect of inflammation, several studies suggest that inflammatory signals exert a potentially positive influence on neural stem cell proliferation, migration and differentiation. Tumor necrosis factor alpha (TNF-α) is one of the best-characterized mediators of inflammation. To date, conclusions about the action of TNF on neural stem or progenitor cells (NSCs, NPCs) have been conflicting. TNF seems to activate NSC proliferation and to inhibit their differentiation into NPCs. The purpose of the present study was to analyze the molecular signal transduction mechanisms induced by TNF and resulting in NSC proliferation. RESULTS: Here we describe for the first time the TNF-mediated signal transduction cascade in neural stem cells (NSCs) that results in increased proliferation. Moreover, we demonstrate IKK-α/β-dependent proliferation and markedly up-regulated cyclin D1 expression after TNF treatment. The significant increase in proliferation in TNF-treated cells was indicated by increased neurosphere volume, increased bromodeoxyuridin (BrdU) incorporation and a higher total cell number. Furthermore, TNF strongly activated nuclear factor-kappa B (NF-κB) as measured by reporter gene assays and by an activity-specific antibody. Proliferation of control and TNF-treated NSCs was strongly inhibited by expression of the NF-κB super-repressor IκB-AA1. Pharmacological blockade of IκB ubiquitin ligase activity led to comparable decreases in NF-κB activity and proliferation. In addition, IKK-β gene product knock-down via siRNA led to diminished NF-κB activity, attenuated cyclin D1 expression and finally decreased proliferation. In contrast, TGFβ-activated kinase 1 (TAK-1) is partially dispensable for TNF-mediated and endogenous proliferation. Understanding stem cell proliferation is crucial for future regenerative and anti-tumor medicine. CONCLUSION: TNF-mediated activation of IKK-β resulted in activation of NF-κB and was followed by up-regulation of the bona-fide target gene cyclin D1. Activation of the canonical NF-κB pathway resulted in strongly increased proliferation of NSCs

    Toll-like receptor 4 signalling and its impact on platelet function, thrombosis, and haemostasis

    Get PDF
    Platelets are non-nucleated blood cells that participate in a wide range of physiological and pathological functions. Their major role is mediating haemostasis and thrombosis. In addition to these classic functions, platelets have emerged as important players in the innate immune system. In particular, they interact with leukocytes, secrete pro- and anti-inflammatory factors, and express a wide range of inflammatory receptors including Toll-like receptors (TLRs) e.g. Toll-like receptor 4 (TLR4). TLR4, which is the most extensively studied TLR in nucleated cells, recognises lipopolysaccharides (LPS) that are compounds of the outer surface of Gram-negative bacteria. Unlike other TLRs, TLR4 is able to signal through both the MyD88-dependent and -independent signalling pathways. Notably, despite both pathways culminating in activation of transcription factors, TLR4 has a prominent functional impact on platelet activity, haemostasis, and thrombosis. In this review, we summarise the current knowledge on the TLR4 signalling in platelets, critically discuss its impact on platelet function, and highlight the open questions in this area

    Tumor necrosis factor alpha induced proliferation of adult neural stem cells is mediated via NF-κB

    Get PDF
    Widera D, Mikenberg I, Elvers M, Kaltschmidt C, Kaltschmidt B. Tumor necrosis factor alpha triggers proliferation of adult neural stem cells via IKK/NF-kappa B signaling. BMC NEUROSCIENCE. 2006;8(Suppl 1):P1

    Impact of polysialylated CD56 on natural killer cell cytotoxicity

    Get PDF
    Moebius J, Widera D, Schmitz J, Kaltschmidt C, Pichaczek C. Impact of polysialylated CD56 on natural killer cell cytotoxicity. BMC IMMUNOLOGY. 2007;8(1):13

    Development and characterisation of a novel NF-κB reporter cell line for investigation of neuroinflammation

    Get PDF
    Aberrant activation of the transcription factor NF-κB, as well as uncontrolled inflammation has been linked to autoimmune diseases, development and progression of cancer and neurological disorders like Alzheimer’s disease. Reporter cell lines are a valuable state-of-the art tool for comparative analysis of in vitro drug screening. However, a reporter cell line for the investigation of NF-κB-driven neuroinflammation has not yet been available. Thus, we developed a stable neural NF-κB-reporter cell line to assess the potency of pro-inflammatory molecules and peptides, as well as anti-inflammatory pharmaceuticals. We used lentivirus to transduce the glioma cell line U251-MG with a tandem NF-κB reporter construct containing GFP and firefly luciferase allowing an assessment of NF-κB activity via fluorescence microscopy, flow cytometry and luminometry. We observed a robust activation of NF-κB after exposure of the reporter cell line to Tumour 2 necrosis factor alpha (TNFα) and amyloid-β peptide [1-42] as well as to LPS derived from Salmonella minnesota and Escherichia coli. Finally, we demonstrate that the U251-NF-κB-GFP-Luc reporter cells can be used for assessing the anti-inflammatory potential of pharmaceutical compounds using Bay11-7082 and IMD0354. In summary, our newly generated cell line is a robust and cost-efficient tool to study pro- and anti-inflammatory potential of drugs and biologicals in neural cells

    Quantitative single-molecule imaging of TLR4 reveals ligand-specific receptor dimerization

    Get PDF
    In humans, invading pathogens are recognized by Toll-like receptors (TLRs). Upon recognition of lipopolysaccharide (LPS) derived from the cell wall of gram-negative bacteria, TLR4 dimerizes and can stimulate two different signaling pathways, the proinflammatory, MyD88-dependent pathway and the antiviral, MyD88-independent pathway. The balance between these two pathways is ligand-dependent, and ligand composition determines whether the invading pathogen activates or evades the host immune response. We investigated the dimerization behavior of TLR4 in intact cells in response to different LPS chemotypes through quantitative single-molecule localization microscopy (SMLM). Quantitative super-resolved data showed that TLR4 was monomeric in the absence of its coreceptors MD2 and CD14 in transfected HEK 293 cells. When TLR4 was present together with MD2 and CD14, but in the absence of LPS, 52% of the receptors were monomeric and 48% were dimeric. LPS from Escherichia coli or Salmonella minnesota caused the formation of dimeric TLR4 complexes, whereas the antagonistic LPS chemotype from Rhodobacter sphaeroides maintained TLR4 in monomeric form at the cell surface. Furthermore, we showed that LPS-dependent dimerization was required for the activation of NF-κB signaling. Together, these data demonstrate ligand-dependent dimerization of TLR4 in the cellular environment, which could pave the way for a molecular understanding of biased signaling downstream of the receptor
    • …
    corecore